
P1: GXB

International Journal of Theoretical Physics [ijtp] pp984-ijtp-472810 October 22, 2003 9:55 Style file version May 30th, 2002

International Journal of Theoretical Physics, Vol. 42, No. 9, September 2003 (C© 2003)

Quantization of Christ–Lee Model Using
the WKB Approximation
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The Hamilton–Jacobi formalism for constrained systems is applied to the Christ–Lee
model. The equations of motion are obtained and the action integral is determined in
the configuration space. This enables us to quantize the Christ–Lee model by using the
WKB approximation.
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1. INTRODUCTION

The Christ–Lee model is viewed as a constrained system (singular system)
(Christ and Lee, 1980; Costaet al., 1985). The usual canonical quantization pro-
cedure may fail for constrained systems for several reasons: it may not be possible
to eliminate some of velocities by a Legendre transform, or it may be that the
Hamiltonian equations do not reproduce the desired dynamical equations. The
basic ideas of the classical treatment and the quantization of constrained systems
were presented a long time ago by Dirac (1964). He distinguishes between two
types of constraints, first and second classes. Most physicists believe that this dis-
tinction is quite important not only in the classical theories but carries through in
the quantum theories (Faddeev, 1969; Henneax and Teitelboim, 1992).

More recently, another powerful approach—the Hamilton–Jacobi
formalism—has been developed for quantizing constrained systems (G¨uler, 1992;
Rabei, 1996; Rabei and G¨uler, 1992). The equivalent Lagrangian method (G¨uler,
1989) is used to obtain the set of Hamilton–Jacobi partial differential equations
(HJPDEs) for constrained systems. In this approach the distinction between first
and second class constraints is not necessary. The equations of motion are written
as total differential equations in many variables which require the investigation of
integrability conditions. In previous work (Rabei, 1996) the link between the two
approaches is studied. It is shown that the Hamilton–Jacobi approach is always in
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exact agreement with the Dirac approach. The integrability conditions are equiv-
alent to the consistency conditions.

On the other hand, we have approached the problem of quantization of con-
strained systems in a somewhat interesting way (Rabeiet al., 2002). A general
solution of the set of HJPDEs of these systems has been proposed, so that the
Hamilton–Jacobi function in configuration space has been obtained. This formu-
lation leads to another approach for solving mechanical problems for constrained
systems in the same manner as for unconstrained systems. In addition, calculating
this function enables us to quantize constrained systems using the WKB approxi-
mation (Rabeiet al., 2002).

In this paper we study the same procedure for the Christ–Lee model. It is
organized as follows. In Section 2, the quantization of Christ–Lee model using
Dirac method is reviewed. In Section 3, this model is quantized using the WKB
approximation. The work closes with some concluding remarks in Section 4.

2. THE CHRIST–LEE MODEL IN STANDARD DIRAC
QUANTIZATION METHOD

The Christ–Lee model is described by the singular Langrangian of the form,

L = 1

2
[ṙ 2+ r 2(θ̇ − z)2] − V(r ). (1.1)

The usual Hamiltonian is calculated as

H = 1

2
p2

r +
1

2r 2
p2
θ + zpθ + V(r ) (1.2)

with the primary constraint

81 = pz ≈ 0, (1.3)

wherer andθ are plane polar coordinates,z is another generalized coordinate, and
V(r ) is a potential bounded from below (Costaet al., 1985). Using the consistency
conditions (Dirac, 1964), one finds the secondary constraints.

82 = pθ ≈ 0 (1.4)

It is easy to check that there are no further constraints in the theory.
According to Dirac (1964) classification, the Hamiltonian (1.2) and the con-

straints (1.3) and (1.4) are first class. Thus, the total Hamiltonian reads as

HT = H + λpz (1.5)

This gives the following equations of motion:

ṙ = pr , (1.6)

θ̇ = z, (1.7)
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ż = λ, (1.8)

ṗr = −dV(r )

dr
, (1.9)

ṗθ = 0, (1.10)

ṗz = 0. (1.11)

Equations (1.6) and (1.9) lead to the following second-order ordinary differential
equation of the form

r ¨+ dV(r )

dr
= 0. (1.12)

Let us choose the potential to be harmonicV(r ) = 1
2r 2, then (1.12) has a

solution of the form

r = Acost + B sint (1.13)

and the corresponding momentumpr reads as

pr = −Asint + B cost. (1.14)

On the other hand, to quantize the Christ–Lee model, the gauge-fixing con-
ditions (Dayi, 1989) can be chosen as

83 = z≈ 0, (1.15)

84 = θ ≈ 0. (1.16)

These constraints make the system second class with1ab = {8a,8b} where
a, b = 1, 2, 3, 4. Thus one should obtain the Dirac brackets

{r, pr }D = 1; {θ , pθ }D = 0; {z, pz}D = 0, (1.17)

corresponding to the commutators:

[r, pr ] = i h; [θ , pθ ] = 0; [z, pz] = 0, (1.18)

where the Dirac brackets for any functionsf (q, p),g(q, p) are defined as{ f, g}D =
{ f, g} − { f,8a}1ab{8b, g}, with1ab being the inverse of1ab. Besides, the cor-
responding schr¨odinger equation reads,

−h2

2

d2

dr2
9 + V(r )9 = E9. (1.19)
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3. THE WKB APPROXIMATION OF CHRIST–LEE MODEL

Following to Güler (1992) and Rabei and G¨uler (1992), the set of HJPDEs
for constrained systems is written as

H ′0 = p0+ H0;

H ′µ = pµ + Hµ. µ = N − r + 1, . . . , N (2.1)

Here N − R is the rank of the Hessian matrix,H0 is the usual Hamiltonian,H ′µ
are the primary constraints,p0 andpµ are the canonical conjugate momenta to the
time t and the coordinatesqµ respectively. In order words,p0 = ∂S

∂t andpµ = ∂S
∂qµ

.
Following to Rabeiet al.(2002), the general solution for Eq. (201) is proposed

in the form

S(qa, qµ, t) = f (t)+Wa(Ea, qa)+ fµ(qµ), (2.2)

wherea = 1, 2,. . . , N − R.
In the same reference (Rabeiet al., 2002), the equations of motion are obtained

using the canonical transformations as

λa = ∂S

∂Ea
, pi = ∂S

∂qi
, i = 1, 2,. . . , N (2.3)

whereλa are constants that can be determined from the initial conditions. These
equations (2.3) can be solved to furnishqa and the momentapi as

qa = qa(λa, Ea, qµ, t); pi = pi (λa, Ea, qµ, t). (2.4)

The semiclassical expansion (WKB approximation) of the Hamilton–Jacobi func-
tion of constrained systems has been studied (Rabeiet al., 2002). This expansion
leads to the following wave function

9(qa, qµ, t) =
[

N−R∏
a=1

90a(qa) exp

(
i S(qa, qµ, t)

h

)]
, (2.5)

where90a(qa) = 1√
pa

. The above wave function (2.5) satisfies the conditions

H ′09 = 0

H ′µ9 = 0

in the semiclassical limith→ 0.
Now making use of Eq. (2.1), the set of HJPDEs to the Christ–Lee model can

be obtained as

H ′0 = p0+ 1

2
p2

r +
1

2r 2
p2
θ + zpθ + V(r ) = 0,

H ′z = pz = 0. (2.6)
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According to Rabei (1996), the integrability conditions which mean that the total
differential of H ′0 andH ′z are equal to zero lead to new constraint

H ′θ = pθ = 0 (2.7)

Thus, the set of HJPDEs (201) can be rewritten as

∂S

∂t
+ 1

2

(
∂S

∂r

)2

+ V(r ) = 0; (2.8)

∂S

∂z
= 0; (2.9)

∂S

∂θ
= 0, (2.10)

wherepr = ∂S
∂r , pz = ∂S

∂z , andpθ = ∂S
∂θ

.
According to Eq. (2.2) the functionShas the following form

S= −Et +W(r, E)+ f1(z)+ f2(θ ). (2.11)

Substituting in eqs. (2.8–10), we get

−E + 1

2

(
∂W

∂r

)2

+ V(r ) = 0, (2.12)

∂ f1

∂z
= 0, (2.13)

∂ f2

∂θ
= 0. (2.14)

Equations (2.13) and (2.14) givef1= constant andf2= constant, while Eq. (2.12)
gives

W =
∫ √

2(E − V(r )) dr. (2.15)

Thus,

S= −Et +
∫ √

2(E − V(r )) dr + A, (2.16)

whereA is constant. The equations of motion read as

λ = ∂S

∂E
= −t +

∫
dr√

2(E − V(r ))
,

pr = ∂S

∂r
=
√

2(E − V(r )). (2.17)
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TakingV(r ) = 1
2r 2, and inserting in Eq. (2.17), one finds

r =
√

2E sin(t + λ), (2.18)

pr =
√

2E cos(t + λ). (2.19)

ChoosingA = √2E sinλ andB = √2E cosλ, one observes that Eqs. (2.18) and
(2.19) are in exact agreement with Eqs. (1.13) and (1.14).

We are now in a position to quantize our system. Making use of Eq. (2.5) the
wave function for the Christ–Lee model can be written as

9(r, t) = 1

[2(E − V(r ))]1/4
exp

(−i E

h

)
exp

(
i

h

∫ √
2(E − V(r )) dr

)
.

(2.20)

The above wave function (2.20) satisfies the Schr¨odinger equation (1.19) in the
semiclassical limith→ 0.

4. CONCLUSION REMARKS

In this work the proposed general method of our previous work (Rabeiet al.,
2002) for determining the Hamilton–Jacobi function of constrained systems is
applied to the Christ–Lee model. This function is used to construct a suitable wave
function for the model.

Following Henneaxet al. (1990) the number of physical degrees of freedom
of the Christ–Lee model is one. In this formalism we have shown that the action
integral and the wave function9 are obtained in terms of the generalized coordinate
r and the timet . In other words there is only one generalized coordinater and
the corresponding generalized momentumpr . This is in exact agreement with
Henneaxet al. (1990) and Baleanu and G¨uler (2000).
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